Bounds for damping that guarantee stability in mass-spring systems.
نویسندگان
چکیده
Mass-spring systems are often used to model anatomical structures in medical simulation. They can produce plausible deformations in soft tissue, and are computationally efficient. Determining damping values for a stable mass-spring system can be difficult. Previously stable models can become unstable with topology changes, such as during cutting. In this paper, we derive bounds for the damping coefficient in a mass-spring system. Our formulation can be used to evaluate the stability for user specified damping values, or to compute values that are unconditionally stable.
منابع مشابه
Robust Controller Designs for Second-Order Dynamic Systems: A Virtual Passive Approach
This paper presents a robust controller design for second-order dynamic systems. The controller is model independent and is a virtual second-order dynamic system. The conditions for actuator and sensor placements are identified for controller designs that guarantee overall closed-loop stability. The dynamic controller can be viewed as a virtual passive damping system that serves to stabilize th...
متن کاملA New Robust Control Design Based on Feedback Compensator for Sssc
In this paper, the modified linearized Phillips-Heffron model is utilized to theoretically analyze asingle-machine infinite-bus (SMIB) installed with SSSC. Then, the results of this analysis are used forassessing the potential of an SSSC supplementary controller to improve the dynamic stability of apower system. This is carried out by measuring the electromechanical controllability through sing...
متن کاملA General Rule for the Influence of Physical Damping on the Numerical Stability of Time Integration Analysis
The influence of physical damping on the numerical stability of time integration analysis is an open question since decades ago. In this paper, it is shown that, under specific very general conditions, physical damping can be disregarded when studying the numerical stability. It is also shown that, provided the specific conditions are met, analysis of structural systems involved in extremely hi...
متن کاملMass Participation Factor in Defining Non-classical Range of Behavior for Mass Isolated Systems
The new techniques in seismic design of structures are usually attributed to high damping ratios. In such systems, the assumption of classical (i.e. proportional) damping is not valid and in most cases they should be considered as Non-classical systems. Since the analytical tools for studying the behavior of such structures are not easily available, the present work attempts to find the limits,...
متن کاملMass Participation Factor in Defining Non-classical Range of Behavior for Mass Isolated Systems
The new techniques in seismic design of structures are usually attributed to high damping ratios. In such systems, the assumption of classical (i.e. proportional) damping is not valid and in most cases they should be considered as Non-classical systems. Since the analytical tools for studying the behavior of such structures are not easily available, the present work attempts to find the limits,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Studies in health technology and informatics
دوره 119 شماره
صفحات -
تاریخ انتشار 2006